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Abstract 

In this paper, we present a numerical approach to solve the GNLSE and analyze soliton interaction 

phenomena using COMSOL environment. By leveraging the capabilities of COMSOL's PDE module, 

we are able to accurately capture the dynamics of solitons and investigate their interactions. We 

analyze the impact of different parameters such as soliton power, initial separation distance, and 

dispersion characteristics on the soliton dynamics. Furthermore, we examine the role of higher-order 

dispersion terms in shaping the soliton interactions. Our findings demonstrate the effectiveness of the 

proposed numerical approach in accurately simulating and analyzing soliton interaction phenomena. 

The COMSOL-based methodology provides a flexible and efficient framework for studying complex 

nonlinear optical systems, enabling researchers to gain insights into the behavior of solitons in 

different media and design optimized communication systems. This paper contributes to the 

understanding of soliton dynamics and provides a practical tool for investigating the behavior of 

solitons in nonlinear dispersive media. The presented numerical approach using COMSOL opens 

avenues for further research in nonlinear optics and fiber optic communication systems. 

Keywords: FEM, higher order nonlinearity, soliton interaction.  

 

1. INTRODUCTION  

Fiber solitons are fascinating phenomena that occur in optical fibers, which are long, thin strands of 

glass or plastic used to transmit information in the form of light pulses. Solitons are self-sustaining, 

localized wave packets that retain their shape and velocity as they propagate through a medium [1]. 

In the context of fiber optics, fiber solitons are special types of optical solitons that form due to a 

delicate balance between the dispersive and nonlinear properties of the fiber [2]. Dispersion refers to 

the spreading out or broadening of an optical pulse as it travels through the fiber, while nonlinearity 

represents the dependence of the fiber's refractive index on the intensity of the light passing through 

it [3]. When these two opposing effects interact in the right manner, a fiber soliton can be generated. 

The nonlinear nature of the fiber causes the light pulse to self-focus, compensating for the dispersive 

effects and preventing the pulse from dispersing or spreading out over long distances [4, 5]. This 

ability to maintain its shape and size enables the soliton to travel long distances without significant 

distortion. [6].  

Stimulated Raman scattering (SRS) is a nonlinear optical process that occurs in fiber due to the 

interaction between the intense optical pulse and the molecular vibrations of the fiber material [4]. It 

leads to the transfer of energy from the soliton to lower-frequency components through the generation 

of new frequencies via Raman amplification. As a result, the soliton experiences energy loss and 

spectral broadening. SRS can limit the distance over which solitons can propagate without significant 
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degradation, and it becomes more pronounced as the power or duration of the soliton increases [7]. 

Self-steepening (SS) is a phenomenon that arises from the nonlinear nature of the fiber medium. It 

causes the leading edge of the soliton to propagate faster than the trailing edge, resulting in a 

steepening of the pulse shape during propagation [8]. This effect leads to spectral broadening and an 

increase in the peak power of the soliton [4]. SS can affect the stability and duration of the soliton, 

and it becomes more prominent for shorter duration pulses. Dispersion is the phenomenon where 

different spectral components of an optical pulse travel at different speeds, causing pulse broadening. 

Third-order dispersion (TOD) refers to the variation of the dispersion with wavelength [2, 4]. In the 

context of fiber solitons, it can introduce temporal oscillations and affect the pulse duration and shape. 

TOD can counteract the self-focusing effect of the fiber nonlinearity, making it more challenging to 

maintain soliton propagation over long distances [2]. Compensation techniques, such as dispersion 

management, can be employed to mitigate the adverse effects of TOD. It's important to note that these 

effects do not completely destroy the soliton's properties, but they can modify its characteristics and 

impose limitations on its propagation distance and stability. Researchers and engineers working with 

fiber solitons need to carefully consider and manage these effects to optimize soliton-based 

communication systems and ensure reliable data transmission over long distances [6, 7].  

In this paper, we will solve the generalized propagation equation involving SRS, SS, and TOD effects 

using the COMSOL environment and we will highlight the evolution of the soliton and the interaction 

of the soliton and show the effects of the soliton order. 

 

2. GENERALIZED NONLINEAR SCHRODINGER EQUATION 

The Generalized Nonlinear Schrödinger Equation (GNLSE) is a theoretical description used to study 

the propagation of optical pulses in nonlinear optical fibers. It is an extension of the Nonlinear 

Schrödinger Equation (NLSE) that takes into account additional effects such as higher-order 

dispersion, SS and SRS. The GNLSE can be written as [3, 4, 9-12] 
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where ( , )A z T  is the slowly varying electric field envelope of the optical pulse, z is the propagation 

distance, T  is the pulse time, n  represents the nth-order dispersion coefficient, the parameter   

represents the fiber attenuation,   is the nonlinearity coefficient, 1/s ow =  and R  is the 

characteristic time for the SRS. The parameters 2  stands for group velocity dispersion (GVD) and 

the higher-order dispersion terms ( 3 4,  , etc.) capture the effects of group velocity dispersion 

beyond the second order. The right-hand side models nonlinear effects, where the first term on the 

right represents the Kerr nonlinearity, which describes the intensity-dependent refractive index of the 

medium. It leads to self-phase modulation (SPM) and self-focusing or self-defocusing effects, 

depending on the sign of nonlinearity parameter. The first time derivative term represents the 

dispersion of the nonlinearity, i.e. SRS, while the second derivative term usually associated with 

effects such as SS and optical shock formation [13, 14]. 

This equation was solved numerically, and it is the required to study the soliton in optical fibers. 

Numerical methods such as split-step Fourier methods or finite-difference methods are commonly 

used to solve the GNLSE and obtain the pulse evolution in nonlinear media. These well-known 
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methods have drawbacks such as the long period of calculations and the associated inaccuracy. In 

this research, we prepared a COMSOL environment to solve the equation, which is characterized by 

fast completion and higher accuracy. For pulses of width 5T ps , the parameters 
1( )o ow T −
 and /R T  

become so small, such that the last two terms in Eq. (1) can be neglected. As the contribution of the 

third order dispersion is also quite small for such pulses one can employ the reduced NLSE [1, 15].  

 

3. THE NORMALIZED GNLSE 

When discussing the soliton problem, it is best to work on a normalized propagation equation. In 

order to obtain this equation that is without units, we will perform the following transformations [4, 

16] 
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Onto Eq.(1), keeping only the second and third terms of dispersion, and neglecting the attenuation, to 

get [3] 
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Where P  is the initial power, DL  is the dispersive length, NLL  is the nonlinear length, oT  is the pulse 

width and 2( ) 1sgn  =  for normal GVD. The parameters  
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Govern, respectively, soliton order, the effects of TOD and SS. The symbol /R R oT T=   stands for 

intrapulse SRS [17]. All three parameters 3, , Rs T  vary inversely with pulse width and are negligible 

for 1oT ps but they become appreciable for femtosecond pulses [12]. The GNLSE describes both 

bright solitons and dark solitons, where 2sgn( )  is the sign GVD that can obtain bright and dark 

soliton by changing the sign. Bright soliton corresponds to the solutions of Eq. (2) with 2sgn( ) 1 =  

and occur in normal GVD region of fibers. Similar dark solitons, correspond to solution of Eq. (2) 

with 2sgn( ) 1 = −  and occur in the anomalous GVD region of fibers. The main difference compared 

with case of bright solitons is that ( )u   becomes a constant (rather than being zero as | | →  ) [18, 

19]. In general, the mathematical form of the hyperbolic secant pulse is [4]    

( )(0, ) sec                                                                 (3)
2

iC
u h  

 
= − 

 

 
Where C is the initial chirp, / oT T =  and T  is the half width (at 1/ e intensity point). T  is often 

replaced with the full width at half maximum (FWHM), where  1.763FWHM oT T=  [2,3].  

  

4. SOLITON INTERACTION     

The time interval between two neighboring pulses sets the bit rate of a communication system. It is 

thus important to determine how close two solitons can come without affecting each other. Interaction 

between two solitons has been studied numerically. It is clear on physical grounds that two solitons 
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would being to affect each other only when they are close enough that their tails overlap. Numerical 

solutions of the GNLSE are quite instructive and allow exploration of different amplitudes and 

different phases associated with a soliton pair by using the following form at the input end of the fiber 

[1, 5]  

(0, ) sech( )  sech[ ( )]e                                 (4)iu q r r q   = + + −  

Where r is the relative amplitude,   is the initial phase difference and 2q  is the initial separation 

between the two solitons. There are different types of solitons interactions. Soliton collision happened 

between two hyperbolic secant fields to collide both in linear medium and interesting nonlinear 

medium (soliton collision), soliton attraction will be happening in which two hyperbolic secant fields 

as before, but with nonlinear phase. In other, the hyperbolic secant pulses are propagated parallel to 

each other soliton repulsion is implemented by making one of two hyperbolic secant fields out of 

phase with respect to other [19].  

 

5. RESULTS AND DISCUSSION  

The soliton phenomenon is investigated based on the medium used for its transmission, as the 

propagation equation varies depending on the specific medium. When studying solitons through 

optical fibers, researchers typically examine the simplified form by considering the effects of GVD 

and SPM alone. Alternatively, they may also incorporate the influences of stimulated Raman 

scattering (SRS) and self-steepening (SS). In all cases, the soliton order is the predominant factor, 

determined by several variables: initial pulse width, GVD, initial power, and nonlinearity factor.  In 

the generalized propagation equation, there exist additional influential factors that affect solitons, 

namely: initial chirp, SRS, SS and TOD. These factors come into play when the initial pulse width is 

on the order of 20 ps. During the study of soliton interaction, other factors are considered, such as the 

amplitude ratio, time interval between adjacent solitons, and phase difference between them. Even 

slight variations in these factors over small scales can have significant effects on soliton propagation. 

All simulations were performed by solving the propagation equation using the COMSOL 

environment based on FEM. The smoothness of the resulting figures depends on the mesh size. A 

smaller mesh size can lead to delays in computer processing and affect the accuracy of the results. 

Conversely, using a larger mesh size can have the opposite effect. To strike a balance between screen 

size and result accuracy, we selected an appropriate mesh size. During the simulation, we study the 

change of ( , )u    under the effects of: soliton order N , the normalized pulse width   of the 

hyperbolic sec or Gaussian pulses, the sign of GVD, the effect of TOD 3 , the effect of SRS RT  , the 

effect of SS, s , and the normalized propagation length / Dz L = . We will also study the effects of 

the initial chirp on the propagation of the soliton pulse.  

Figs. (1) to (4) represent soliton propagation through an optical fiber in the absence of TOD, SS, and 

SRS for the cases 1,2,3N =  respectively, at zero chirp, where the left subfigure indicates the soliton 

propagation spectrum and the right subfigure indicates the pulse shape at different distances for the 

hyperbolic sec input pulse case. Fig. (1) Represents the ideal case (fundamental soliton), 1N = . 

Notice that the soliton maintains its shape and intensity for any distance, or that it achieves the 

property of perfect balancing between nonlinearity and dispersion effects. This case is favorite in 

optical communication system. Fig. (2) Represents the case 2N = , it appears that the intensity 

increases to a maximum value and then decreases to a minimum value with the distance, and this is 

repeated periodically with distance. The pulse is compressed and its intensity increases at some 

distances, then it returns to the original shape again. Also, the pulse shape will suffer from distortions. 

This periodicity may also be useful in some optical communication system. Fig.(3) represents the 
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case 3N = , it appears that the evolution of the soliton through the optical fiber will initially lead to 

an increase in intensity in the center of the pulse, then the pulse splits into two parts with a decrease 

in intensity, then returns again to form a single pulse, and this behavior continues periodically. The 

shape of the pulse suffers from significant changes due to the propagation. The periodicity distance 

that was achieved in Fig. (3) Is less than that achieved in Fig. (2). That is, an increase in the periodic 

distance means that the shape of the pulse is stable for a greater distance and vice versa. Fig. (4) 

Represents the case when 4N = . The pulse initially suffers from compression and an increase in 

intensity, then it splits into two identical parts that diverge with increasing distance and the shape of 

the pulse suffers from major distortions. For larger propagation distances, periodicity can also be 

achieved, which is not shown during the figure. For all Figs. (1) to (4), we know that the interaction 

between nonlinearity and dispersion dictates the resulting behavior of the pulse during propagation. 

Since the nonlinearity increases with the increase in the input power, and in turn the increase in the 

soliton order, it is natural that this balance will be difficult to verify with the higher-order solitons 

except after larger propagation distances.  

 

Figure 1: Pulse Evolution for N=1 Soliton at Zero Chirp 

 

Figure 2: pulse evolution for N=2 soliton at zero chirp 
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Figure 3: Pulse Evolution for N=3 Soliton at Zero Chirp 

 

Figure 4: Pulse Evolution for N=4 Soliton at Zero Chirp 

Figs.(5) and (6) obtains the soliton evolution with distance for the soliton orders 1,2N = , 

respectively, in the absence of SS and TOD, where the left subfigure indicates the case 0.1RT =  and 

the right subfigure refers to the case 0.3RT = . Fig.(5) shows the fundamental soliton that the effects 

are represented by a very small deviation to right in case 0.1RT = , and a larger deviation to right and 

decrease in the value of the pulse intensity in case 0.3RT = . These effects are not evident except with 

a large diffusion distance up to 3 = . Fig. (6) Represents case 2N = , where the amount of input 

power increased, and this caused a large deviation of the pulse center and a decrease in the pulse 

intensity in case 0.1RT = . In the case 0.3RT = , a large distortions and broadening of the pulse will 

appear, in addition to the deviation to the right. These changes occur here in a less propagation 

distance 1.8 = .  

Figs.(7) and (8) shows the pulse shape at different distances in absence the SS and TOD effects for 

the cases 1,2N = , respectively, where the left subfigure indicates the case 0.1s =  and the right 

subfigure refers to the case 0.3s = . Fig.(7) represents the fundamental soliton, in case 0.1s = , the 

peak of the pulse shows a small shift to the right that increases with distance. The reality of the case 

is that the displacement means an increase in the steepening of the leading edge of the pulse. In case

0.3s = , the steepness of the leading edge increases but the pulse base maintains the same time period. 

Here, it appears as if its peak has received a push to the right, which explains the physical meaning 
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of SS. Fig.(8) represents case 2N = . It appears from the figure that the irregularity is lost with the 

increase of the distance, as the propagated pulse suffers from shifts and distortions, in addition to the 

occurrence of SS. An increase in SS causes an increase in shifts and distortions. Generally, the 

periodicity loses in all cases. 

 

Figure 5: Pulse Evolution for N=1 Soliton At 
30, 0s = =  and 0.1,0.3RT = , Respectively 

 

Figure 6: Pulse Evolution for N=2 Soliton At 
30, 0s = =  and 0.1,0.3RT = , Respectively 

Figs. (9) to (12) represents the pulse shape at different propagation distances for cases N=1, 2, 

respectively, where the left subfigure indicates 3 0 =  and the right subfigure indicates 3 0.002 = . 

Fig. (9) Represents case N=1 did not show significant changes in the shape of the pulse and periodicity 

can be kept. We did not notice a difference between the two cases 3 0,0.002 = . Fig. (10) Represents 

the case N=2. Here, there are significant effects in the shape of the pulse, and there are no 

displacements or changes in the slope of the leading edge of the pulse. Note that there are very slight 

differences due to the change in δ3. 
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Figure 7: pulse evolution for N=1 soliton at 
30, 0RT = =  and 0.1,0.3s = , respectively 

 

Figure 8: Pulse Evolution for N=2 Soliton At 
30, 0RT = =  and 0.1,0.3s = , Respectively 

Fig. (11) Represents the pulse shape for several distances in case N=1 at 3 0.002 = , where the left 

subfigure indicates case 0.1RT =  and the right subfigure indicates case 0.3RT = . By comparing Fig. 

(11) with (9) the effect of adding SRS is clear, as the center of the pulse will shift to the right with 

increasing distance and this displacement increase with the value of RT . Fig. (12) Represents the 

pulse shape for several distances for case N=2 at 3 0.002 = , where the left subfigure indicates case 

0.1RT =  and the right figure indicates case 0.3RT = . Comparing Fig, (12) with (10), we note that the 

pulse suffers from higher distortions and shifts proportional to the propagation distance by 

introducing the TOD effects.  
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, respectively
3 0,0.002 =and  0, 0RT s= =9: pulse evolution for N=1 soliton at ure Fig 

 

Figure 10: Pulse Evolution for N=2 Soliton At 0, 0RT s= =  and
3 0,0.002 = , Respectively 

Figs.(13) to (21) represent the soliton pair propagation spectrum for the case N=1,2,3, respectively, 

at the conditions 30, 0, 1RC s T r = = = = = = , where the different subfigures indicate to the values

2,2.5,3q = . We notice from Fig.(13) that the soliton pair gets closer together with the evolution in 

distance to from a single pulse of greater intensity. The distance required for the solitons union 

increases with increase of q, as it was 4.5 =  at q= 2, 8 =  at q=2.5 and 13.5 = at q=3. Physically, 

the interaction with distance increases when the soliton pair appoaches each other, and then the 

solitons separate to achieve periodic behavior as long as N=1.  Fig.(14) represents the case N=2. We 

notice that the periodic behavior remains regular, but a decrease in q causes an increase in the 

interaction between the pair of solitons. The increase in interaction is accompanied by the generation 

of a secondary pulse between the pair of input pulses. Fig.(15) represents the case N=3. It shows the 

interaction between the solitons with distance, and this interaction appears with less effect with 

increasing q. searching for periodicals needs to work in larger propagation distances.  
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Figure 11: Pulse Evolution For N=1 Soliton At 
30, 0.002s = =  And 0.1,0.2RT = , Respectively 

 

Figure 12: Pulse Evolution For N=2 Soliton At 
30, 0.002s = =  And 0.1,0.2RT = , Respectively 

 

Figure 13: Soliton Interaction for N=1 at 3 0, 1Rs T r = = = = =  For Many Values Of q  
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Figure 14: Soliton Interaction For N=2 At 3 0, 1Rs T r = = = = =  For Many Values Of q  

 

Figure 15: Soliton Interaction For N=3 At 3 0, 1Rs T r = = = = =  For Many Values Of q  

Fig.(16) represents the propagation spectrum of the pulse at N=1, q=2 and 0 =  without higher order 

nonlinear effects of the cases r= 1, 1.1, 1.2. It is clear from the figure that cases r=1, is the same as 

Fig.(13) but cases r= 1.1, 1.2, will cause the power to be transferred to the pulse of greater intensity 

and the soliton pair union issue will disappear here compared to case r=1. Fig.(17) it represents the 

propagation spectrum of the pulse at N=1, q=2 and r=1, in the absence of high order nonlinear effects 

for the cases ϕ=-π/4, 0, π/4. The case 0 =  similar to the previous figure, but if it is / 4 =  then 

the delayed pulse will increase in intensity at the expense of the advanced pulse, while in the case of  

/ 4 = − , the opposite will happen. In both cases, the periodic behavior will not appear clearly.   
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Figure 16: Soliton Interaction For N=1 At 3 0, 2Rs T q = = = = =  For Many Values Of r  

 

Figure 17: Soliton Interaction For N=1 At 3 0, 2, 1Rs T q r= = = = =  For Many Values Of  

Fig.(18) obtains the soliton N=1, 3 0RT = = , q=2, r=1 and ϕ=0 for the cases s=0, 0.1, 0.2, 

respectively. The cases s=0, 0.1, it is not different from the previous figure, but increasing s will cause 

the energy to transfer from one pulse to another with a rightward shift of the center of the interacting 

solitons. Fig.(19) represents the case at N=2, 3 0s = = , q=2, r=1 and 0 =  for the cases 

0.1,0.2,0.3RT = , respectively. It is clear from the figure that the energy is transformed from the 

advanced pulse to the delayed pulse, and the amount of energy converted increases with the increase 

of  RT . As well as, the deviation of the center of the interacting solitons also increases with RT .  
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Figure 18: Soliton Interaction For N=1 At 3 0, 2, 1, 0RT q r = = = = =  For Many Values Of s  

 

Figure 19: Soliton Interaction For N=1 At 3 0, 2, 1, 0s q r = = = = =  For Many Values Of RT  

Fig.(20) shows the soliton N=3, 0RT s= = , q=2, r=1 and ϕ=0 for cases 3 0,0.001,0.002 = , 

respectively. At 3 0 =  the pulse pair will interact to merge through a certain distance and then 

separate with and presence of two weak pulses out of context of the soliton pair. When 3 0  , the 

merging and splitting mechanism will not fully occur and the periodic behavior will be lost. 

 

Figure 20: soliton interaction for N=3 at 0, 2, 1, 0Rs T q r = = = = =  for many values of 3  
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6. CONCLUSIONS  

In conclusion, the presence of third-order dispersion, SRS, and self-steepening significantly affect 

the properties of both fundamental solitons and higher-order solitons. These effects can cause 

temporal broadening or compression, spectral broadening due to energy transfer, and pulse reshaping. 

The fundamental soliton stands out for its ability to maintain its shape without undergoing any 

changes during propagation. The stability of the fundamental soliton is a result of the delicate balance 

between the nonlinear and dispersive effects, which are carefully engineered in optical fiber systems. 

However, it is important to note that in certain scenarios, solitons may exhibit periodic behavior with 

variations in their shape and characteristics. The periodicity of solitons depends on specific conditions 

such as the magnitude of nonlinearity, dispersion coefficients, and initial conditions. Understanding 

and controlling these phenomena are crucial for applications in nonlinear optics and fiber optics 

communication systems. These variations can be observed in higher-order solitons or solitons 

propagating in dispersive media, where the interplay between nonlinearity and dispersion leads to 

more complex dynamics. 
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